《八年级数学教案优秀30篇》
作为一位不辞辛劳的人民教师,常常要写一份优秀的教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?
内容导航
初二下数学教学工作计划 1数学初二教案 2初二下数学教学工作计划 3初二数学教案 4初二上册数学教学计划 5八年级数学的教案 6数学初二教案 7初二数学教案 8八年级数学教案 9初二上册数学教学计划 10初二下数学教学工作计划 11初二数学教案 12数学初二教案 13数学初二教案 14初二数学教案 15初二数学优秀教案 16初二数学教案 17初二升初三衔接数学教案 18八年级数学教案 19初二数学教案 20初二上册数学教学计划 21初二上册数学教学计划 22数学初二教案 23初二上册数学教学计划 24八年级数学教案 25初二上册数学教学计划 26初二数学教案 27数学初二教案 28数学初二教案 29八年级数学教案 30初二下数学教学工作计划 1
一、学生分析:
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。结合上学期的学习情况,及本学期的主要适应点,想在本学期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
二、教材分析:
第1章二次根式
二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”、“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。
本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。
第2章一元二次方程
方程教学在中学数学教学中占有很大的比例,一元二次方程在初中代数中占有重要地位。一方面,一元二次方程可以看成是前面所学过的有关知识的综合运用,如有理数、实数的概念和整式、分式、开平方等的运算,一元一次方程、二元一次方程组解法等知识,在本章都有应用。从数学角度看,这一章的学习有一定难度,如果前面某个环节薄弱或知识点有问题,就会给本章的学习带来困难,因此,这一章的教学是对以前所学的有关知识的检验,又是一次复习与巩固。当然,一元二次方程知识也是前面所学知识的继续和发展,尤其是方程方面知识的深入和发展。
本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。这一章是全书乃至整个初中代数的一个重点内容。因为这一部分内容既是对以前所学内容的总结、巩固和提高,又是以后学习的知识基础。因此这一章可以说是起到了承上启下的作用。高中阶段的指数方程、对数方程及三角方程,无非就是指数、对数、三角函数的有关知识与一元一次方程、一元二次方程的综合而已。初中代数中的不少主要技能、解题方法以及一些常用的数学思想方法,在本章都有所体现。例如,换元法、因式分解法、配方法等。另外,从具体到抽象的概括能力、逻辑推理能力等等在本章也有体现。可以说,无论从基础知识还是基本技能看,这一章都占有重要的地位。在本章的内容中,应以一元二次方程的解法,特别是公式法作为重点。
第3章频数及其分布
统计学是搜集数据、分析数据,并根据它获得总体信息的科学。本套教材在七年级上册安排了“数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析。为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数。“频数及其分布”这一章就是解决了这一问题。“频数及其分布”这部分内容在原总指浙江版义务教材中也有,但只是作为概率统计初步中的一小节。考虑到频数、频率、频数直方图、频数折线图与日常生活、自然、社会和科学技术领域的密切联系,《数学课程标准》增加了这块内容的份量。本套教材将这块内容独立设章的目的,一方面可用足够的篇幅来更清楚、更详细阐述,也是为每册循序渐进地学习概率与统计知识所作的精心安排。
第4章命题与证明
本章是实验几何过渡到论证几何的启蒙章节。我们应该认识到学习欧几里得几何对锻炼和培养学生的逻辑推理能力,有着其他内容无法代替的作用;然而几何入门难的问题多年来一直存在。对于几何的处理,本套教科书根据《数学课程标准》的要求,提供了一个全新的思路。
从七年级上册“图形的初步知识”一章的实验入门,到七年级下册“三角形的初步知识”“图形和变换”的实验为主,开始出现局部推理,到八年级上册“平行线”“特殊三角形”的实验,开始向推理过渡,再到本章开始有固定格式的论证几何,因为有了一年半几何感性认识的基础,初步的识图能力,简单的推理能力,再学习高层次的论证几何,自然就有了一定的。准备和基础。本章内容处于“实验几何”与“论证几何”的交接点上,它对学生顺利地转入论证几何的学习,有着重要的思维润滑作用。能有效地帮助学生认识到学习论证几何的必要性,�
学生在认识几何证明的必要性方面是本节教学的第一个难点与重点。学生已有一年半的实验几何的学习基础,固然对后阶段的学习有很重要的奠基作用,但也有一定的负迁移作用。学生已经习惯于从“量一量”、“算一算”及图形运动变换中直接得出图形性质,并有了一定的初级、简单推理时充当理由的使用历史,即基本默认了这些性质。因此,使学生充分认识到几何证明的必要性 掌握证明的一般步骤与格式是本章教学的第二个重点与难点。
第5章平行四边形
本章是学习了三角形、几何证明的基础上,开始研究四边形,四边形的学习与三角形有着密切的联系,许多四边形的问题都通过连线转化为两个三角形的问题来解决,且研究的方法有许多类同的地方,所以说四边形是三角形的应用和深化;另外在学了几何证明后,平行四边形内容为证明实例提供了丰富的材料,让学生有机会实践、巩固前面的知识。本章一开始从多边形引入,在知识体系上看也是顺理成章,探索多边形的内角和办法并不深奥,所隐含化归为三角形的思想却是数学中常用的思想方法,会引起学生的关注和兴趣。平行四边形是中心对称图形,利用中心对称变换使平行四边形的许多性质得到合理的解释,用轴对称变换来研究等腰三角形,用中心对称变换来研究平行四边形,用变换的观点来阐述图形的几何性质也是新教材的特点之一。如三角形中位线的定理用中心对称的观点来证明显得合理且简单明了。
本章还穿插了逆命题和逆定理的概念,前一章是“命题与证明”,为了避免在一章中集中过多的抽象概念,给学生带来困难,所以把逆命题与逆定理放在本章,既分散了难点,又因为已有一定量知识积累,有利于学生理解掌握。
第6章特殊平行四边形与梯形
本章是上一章《平行四边形》的深化且延续,从知识体系上看从旋转变换定义了中心对称图形平行四边形以后,从角的特殊性(直角)、从边的特殊性(等边)得到矩形和菱形;从对图形研究的角度看,推理论证在这一章中得到加强与深化,进一步要求学生能清晰、有条理表达自己的思考过程,做到言之有理、落笔有据。同时通过“合作学习”等形式,让学生自主探索这些基本图形的性质及其相互关系,从而丰富对空间图形的认识和感受。应该指出的是:在本套教材中,几何推理证明到此已达到最高要求,根据《数学课程标准》,在后续九(上)《圆的基本性质》《相似三角形》,九(下)《直线与圆、圆与圆的位置关系》等章内容中,除了进一步巩固书写格式、继续训练学生运用数学语言合乎逻辑进行交流讨论外,不再提出其他更高的要求。
本章的主要内容有矩形、菱形、正方形、梯形的概念、性质和四边形是矩形、菱形、正方形及等腰梯形的条件。有些内容在前两个学段学生已有接触,但还十分肤浅。本章不是对以前知识的简单复习,而是同类知识的螺旋上升。特殊平行四边形与梯形的概念与性质是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点。与基本图形(矩形、菱形、正方形、梯形)的概念、性质及其相互关系随之而来的是几何证明,学生要正确理解证明的本身,需要一个较长的过程,是本章主要的教学难点。
三、具体措施:
1、做好教材钻研工作。根据新课程标准,认真上课,认真辅导,也让学生学会认真。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。
3、挖掘数学特长生,发展学生的特长,使其冒尖。
4、进行个别辅导的关键按就是,优生提升能力;辅导差生过关,为差生以后的发展铺平道路。
数学初二教案 2
一、教学目标
1、使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2、通过本节课的教学,向学生渗透“转化”的数学思想方法;
3、通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。
二、重点、难点、疑点及解决办法
1、教学重点:可化为一元二次方程的分式方程的解法。
2、教学难点:解分式方程,学生不容易理解为什么必须进行检验。
3、教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性。
4、解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解。(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤。(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。
三、教学步骤
(一)教学过程
1、复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
(3)解方程,并由此方程说明解方程过程中产生增根的原因。
通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同。
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的`分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
2、例题讲解
例1解方程。
分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正。
解:两边都乘以,得
去括号,得
整理,得
解这个方程,得
检验:把代入,所以是原方程的根。
∴原方程的根是。
虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一步中。需强调方程两边同时乘以最简公分母。另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调。
例2解方程
分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是
正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一转化,化为按字母终行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母。
解:方程两边都乘以,约去分母,得
整理后,得
解这个方程,得
检验:把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根。
∴原方程的根是
师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较。
例3解方程。
分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分和互为倒数,由此可设,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值。
解:设,那么,于是原方程变形为
两边都乘以y,得
解得
当时,去分母,得
解得;
当时,去分母整理,得,
检验:把分别代入原方程的分母,各分母均不等于0。
∴原方程的根是,
此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。
巩固练习:教材P49中1、2引导学笔答。
(二)总结、扩展
对于小结,教师应引导学生做出。
本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。
本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。
此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。
四、布置作业
1、教材P50中A1、2、3。
2、教材P51中B1、2
五、板书设计
探究活动1
解方程:
分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次
设,则原方程变为
∴
∴或无解
∴
经检验:是原方程的解
探究活动2
有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积。
解:设桶的容积为升,第一次用水补满后,浓度为,第二次倒出的农药数为4。升,两次共倒出的农药总量(8+4· )占原来农药,故
整理,(舍去)
答:桶的容积为40升。
初二下数学教学工作计划 3
一、指导思想:
集体备课要求选择最科学的教法和程序,为优质高效的课堂教学做好充分准备。目的是为了充分发挥集体智慧,集思广益,博采众长,真正实现脑资源共享。集体备课必须立足个人备课的基础上,在充分研究课程标准和教材的前提下,集体商讨教学方法,共同研究教学中应注意的问题,同时要兼顾学生的基础和实际情况,确定教学目标,提高课堂教学效率。我组将以“群策群力一教案”的指导思想为指引,建立“个人粗备、资源共享,个人加减,课后反思,教案复备”的备课制度。在步调一致、保持共性的基础上,力求各具特色、突现个性。
二、工作重点
认真开展八年级数学组集体备课活动,在备课中抓住三个结合:与新理念相结合,与集思广益相结合,与课堂高效相结合。开展“一课、一议、一思、一得”的教研活动。组里若有亮点的教学设计将及时发到教学网上供其他教师查阅。
三、备课时间、地点
集体备课时间:每周二第二、三节课和周四集体备课地点:三楼八年级数学办公室
四、集体备课目标、措施:
(一)、目标
1、以学生为本
我组将以学生实际为切入点,集体探讨一种学生易接受、易掌握的`教学方法,努力使绝大部分同学都理解并掌握,力争使每个学生都学有所获。
2、以集体为重
我组将发挥集体智慧,实现资源共享,并保持集体备课的实效性,以达到提高课堂教学效率的目的。
3、以方法为主
备课时主要考虑抓学生的学习方法。在教学过程中,培养学生的学习方法,使他们形成自主学习的习惯,并为其终身学习打下基础。在教学过程中,能给学生提供一个展示自我的平台,达到活跃课堂的目的。
(二)措施
1、由面到点:集体备课时,我们将主要讨论下周上课内容、重点、难点、注意点及学生容易出错的地方、教学策略等等,并选中其中一课时集体备好教案。
2、实现教案的重组:各成员自觉把事先设计的简案纳入到群体中去,每次集体备课时均由组内教师轮流执笔,负责把集思广益后的相关内容整理好后,以便参考、设计,重组教案。
3、结合本班实际修改:各教师根据商定建议,再根据本班具体情况,对教案进行修改补充,甚至再创造,力求体现一种共性和个性的完美结合。
4、及时反馈改进:人总是在不断的反思中进步的,为了吸取经验,总结教训,我们要一课一反思,记下课堂发生的事件,每次集体备课时抽一定的时间交流上周教后感。
五、具体实施步骤:
1、严格执行“个人粗备——集体齐备——个人细备——反思复备”的步骤。
2、备课组成员必须在集体备课前先行备好简案,以及在心中想好自己的设想。
3、中心发言人在集体备课前要深入钻研教材大纲,反复阅读教学参考书,积极查找相关资料,为发言作好充分准备。
4、参照以下依据备课:
(1)三定:定集体备课课题,定中心发言人,定单元教学进度。
(2)五统一:统一单元教学目的,统一教学重点、难点,统一课时分配和进度,统一作业布置和三维训练,统一单元评价测试。
(3)五备:备课标、备教材、备教学手段、备教法、备学法。
(4)五点:重点、难点、知识点、能力点、教育点。
(5)两法:教师的教法和学生的学法。
(6)两题:课堂练习题和课后作业题。
5、集体备课时,除中心发言人作主题发言外,其他教师也要积极参与,发表自己的教学设想并阐述理论依据,经过“争鸣”,形成比较一致的意见和实施教案。
6、融入自己的教学风格,进行实施、总结和反思,最终形成对某一教学内容的最优秀的教学设计。
7、每单元保证有一节详案。其它在原有备课上多作修改,特别要注意记录好课后反思。
六、注意点:
(一)个人初备时
1、突出重点,抓住关键。
2、写出备课提纲。(分析教材所处的地位及前后联系;明确教材的编写意图并确定教学的三维目标;分析教学的重点、难点和关键。)
3、努力提出独创性的设计方案,以便资源共享。
4、提出自己有疑问的地方,以便集思广益,攻克难点。
(二)集体研讨时
1、分别陈述各自的备课方案,以便扬长避短,统一思想,达成共识。
2、讨论下周上课内容中重点、难点、注意点及学生容易出错的地方、教学策略等等。
(三)修正教案
1、应避免千篇一律,否则就丧失了个性。
2、要在学生学习的弱点与知识的缺陷点上下功夫,在学生活动上反复推敲,创造出一个个精品教案。
(四)课后反思和复备课后反思要深入,教案复备要深思。
初二数学教案 4
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的'有效数学模型。
重点、难点
1、重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2、难点:找出能表示整个题意的等量关系。
教学过程
一、复习
1、储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2、商品利润等有关知识。
利润=售价—成本; =商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息—利息税=48。6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%—x
由等量关系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服装的成本是125元。
三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
初二上册数学教学计划 5
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
本学期我继续担任八年级三班四班的数学教学工作,两个班共有109人,从上学期期末考试成绩来看,两班数学基础一般,而且已经开始出现两极分化现象,一部分学生解题作答比较粗心,不能很好的发挥自己的水平,因此要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教学目标
知识技能目标:认识三角形,掌握三角形中各种线段及外角相关知识,进而对多边形的相关知识进行理解掌握;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。
过程方法目标:掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;初步建立数形结合的思维模式,学会观察、分析、归纳、总结几何图形的内在特点,学会使用数学语言表示数学关系。
态度情感目标:通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。
四、教材分析
第十一章 三角形
本章主要学习与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十二章 全等三角形
本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。
教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。
教学难点:领会证明的分析思路、学会运用综合法证明的格式。
第十三章 轴对称
本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。
教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。
教学难点:轴对称性质的应用。
第十四章 整式的乘法和因式分解
本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。
教学重点:整式的乘除运算以及因式分解。
教学难点:对多项式进行因式分解及其思路。
第十五章 分式
本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。
教学重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。
五、教学方法:
本学期针对不同的情况,根据学生的掌握的情况及教材的地位与作用采用比较灵活的教学方法,主要采用启发式教学,以激起学生的学习知识的积极性,培养学生的独立思考、自学能力为主,主要有:
1、学生猜想与学生动手操作相结合。
2、学生独立思考与教师指导相结合。
3、理论与实际相结合。
4、面向全体学生与照顾个别相结合。
5、组织练习与成绩考查相结合。
六、教学措施:
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、搞好单元测试及试卷分析,针对试卷中存在的问题,及时采取行之有效的补救措施,切实解决学生数学学习中存在的困惑。
上文为大家整理的初二数学上册全年教学计划,大家仔细阅读了吗?祝大家生活愉快。
八年级数学的教案 6
知识点2总体、个体、样本
调查中,所要考察对象的全
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调�
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
知识点3中位数的概念
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
知识点4众数的概念
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的'众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我
探究交流
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测
基本概念题
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(2)在某班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,则这个班学生的平均年龄约是_________;
(3)某一学生5门学科考试成绩的平均分为86分,已知其中两门学科的总分为193分,则另外3门学科的分为________;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
数学初二教案 7
教学目标
知识与技能
1、学习什么是三元一次方程和三元一次方程组。 (2)会解简单的三元一次方程组。
2、掌握解三元一次方程组过程中化三元为二元和一元的化归思想。
过程与方法
通过三元一次方程组的解法练习,培养学生分析能力,能根据题目的特点,确定消元方法、消元对象。培养学生的'计算能力、训练解题技巧。
情感态度与价值观
让学生通过自己的探索、尝试、比较等活动去发现一些规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣。
教学重点
使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法。
教学难点:
针对方程组的特点,选择最好的解法。
教学过程
一、复习
解二元一次方程组的思路是什么?有几种方法?
二、引入新课
甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数。
例题展示
1.三元一次方程及三元一次方程组
(1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程。
(2)三元一次方程组:
①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组。
同步练习含答案解析
1.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( )
A.11支B.9支C.7支D.4支
【考点】三元一次方程组的应用。
【专题】压轴题。
【分析】购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,可知钢笔有12支,可设甲种钢笔有x支、乙种钢笔有y支、丙三种钢笔有z支,可列方程,得到整数解即可。
初二数学教案 8
知识与技能
1.了解分式的基本性质,掌握分式的约分和通分法则。掌握分式的四则运算。
2.会用待定系数法求反比例函数的解析式,能利用函数性质分析和解决一些简单的实际问题。
3.体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并运用这些知识进行有关的证明和计算。
5.进一步理解平均数、中位数和众数等统计量的`统计意义,会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
过程与方法
进一步培养学生的合情推理能力和发展学生逻辑思维能力和推理论证的表达能力;解决一些实际问题,体会化归思想和函数的变化与对应的思想;养成用数据说话的习惯和实事求是的科学态度;培养学生的探究能力、数学归纳能力,在活动中培养学生的合作交流能力;逐步形成独立思考,主动探索的习惯。
情感、态度与价值观
丰富学生从事数学活动的经验和体验,通过对问题的共同探讨,培养学生的协作精神,通过对知识方法的总结,培养反思的习惯,和理性思维。培养学生面对教学活动中的困难,能通过合作交流解决遇到的困难。
八年级数学教案 9
教学建议
1、平行线等分线段定理
定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。
注意事项:定理中的。平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。
定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。
2、平行线等分线段定理的推论
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”。
推论的用途:(1)平分已知线段;(2)证明线段的倍分。
重难点分析
本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。
本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。
教法建议
平行线等分线段定理的引入
生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:
①从生活实例引入,如刻度尺、作业本、栅栏、等等;
②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。
教学设计示例
一、教学目标
1、使学生掌握平行线等分线段定理及推论。
2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。
3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。
4、通过本节学习,体会图形语言和符号语言的和谐美
二、教法设计
学生观察发现、讨论研究,教师引导分析
三、重点、难点
1、教学重点:平行线等分线段定理
2、教学难点:平行线等分线段定理
四、课时安排
l课时
五、教具学具
计算机、投影仪、胶片、常用画图工具
六、师生互动活动设计
教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习
七、教学步骤
【复习提问】
1、什么叫平行线?平行线有什么性质。
2、什么叫平行四边形?平行四边形有什么性质?
【引入新课】
由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?
(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)
平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。
下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。
已知:如图,直线 , 。
求证: 。
分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。
(引导学生找出另一种证法)
分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。
证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。
∴
∵ ,
∴
又∵ , ,
∴
∴
为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。
引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。
推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。
注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。
接下来讲如何利用平行线等分线段定理来任意等分一条线段。
例 已知:如图,线段 。
求作:线段 的五等分点。
作法:①作射线 。
②在射线 上以任意长顺次截取 。
③连结 。
④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。
、 、 、 就是所求的五等分点。
(说明略,由学生口述即可)
【总结、扩展】
小结:
(l)平行线等分线段定理及推论。
(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。
(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。
(4)应用定理任意等分一条线段。
八、布置作业
教材P188中A组2、9
九、板书设计
十、随堂练习
教材P182中1、2
初二上册数学教学计划 10
一、学情分析
新学期,初三从新分班,学生情况尚不明了,在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,数几个学生对数学处于一种放弃的心态,课堂作业,需要教师督促,这一少数学生 同时通过本期教学,完成八年级上册数学教学任务。
三、教学目标
1.知识与技能目标
学生通过探究实际问题,认识分式、三角形相似、证明一、数据的统计、二次根式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过证明一的学习初步形成严谨的数学思维。
2.过程与方法目标
掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究三角形相似的条件进一步培养学生的识图能力;通过对数据统计的研究,进一步培养学生良好的发现问题解决问题的能力;通过对分式四则运算,二次根式的相关性质的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。
3.情感与态度目标
通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。
四、教材分析
第一章分式:本章教材重视从实际问题抽象出数学模型,体现了学生学有用的数学,生活中的数学。本章安排了大量的实际问题,通过分析与解决实际问题,提高了学生联系实际应用数学知识的意识、兴趣和能力。重视用类比方法。从分数概念到分式概念,从分数的基本性质、约分与通分、四则运算法则到分式的的基本性质、约分与通分、四则运算法则都运用了类比方法。在学生对分数已有认识的基础上,通过分式与分数的类比,从具体到抽象、从特殊到一般地认识分式。重视转化思想。解分式方程与解一元一次方程最大不同之处:解分式方程必须进行验根。因为解分式方程的第一步是去有未知数的分母,而这带有未知数的分母有可能等于零,导致使原来的分式方程中的分式的分母为零而无意义。在强调解分式方程必须检验时,考虑到学生的知识基础和接受能力,教材没有对解分式方程中增根的理论问题进行深入的讨论,而是通过具本例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根的方法,然后归纳出检验增根的方法。
第二章相似图形:从实际问题引入数学内容,通过对实际问题的分析和解决得出结论,认识相似图形的特征和性质,让学生充分感受到数学与现实世界的联系。通过观察、测量、画图、推理等方法让学生探索得出结论,强调发现结论的过程,加强合情推理。逐步渗透一些逻辑思维方法,体现数学的理性特征。教材中给学生留下适当的探索空间,也给教师的教学留有一定的余地,有助于学生的思维活动,有助于教师的创造性教学,也有助于教师与学生的合作。强调相似三角形在现实生活中的应用。增加了位似这种特殊的相似,并用坐标来确定位置的内容,加强坐标与现实生活的联系。增加了用坐标来研究图形变换的内容,让学生初步体会数形间的关系。
第三章证明(一):本章是在对前面几何结论有了一定的直观认识的基础上编排的,虽然只是证明的初步,但他对证明的必要性,引进公理的必要性,了解作为证明基础的定义、命题、定理等非常重要。同时通过平行、三角形等相关知识的证明实践,帮助学生掌握证明的方法和步骤。
第四章数据的收集和处理:通过学生收集数据和整理数据的过程,使学生体会数据在现实生活中的作用,了解收集数据的基本方法和基本要求以及能够按要求对数据进行简单的分组整理,会用频数分布表,频数分布直方图,频数分布折线图等表达数据的分布情况,并熟练掌握判断数据稳定性的方法,方差法和极差法。本章教学意义不仅仅体现在学生对数据的收集与整理知识上,还体现了学生在收集数据过程中所表现出的积极探索,合作交流的学习精神。
第五章二次根式:本章采取先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算。利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。
五、针对以上学情和教材的分析,为更好的开展教育教学工作,我准备采取以下教学措施
1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。
2、钻研两主课堂,尽量还时间和空间给学生,发挥学生的主观能动性,做好教学反馈工作,扫除学习中的障碍点。 营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。
3、搞好批阅分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,全批全改,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。
4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。
5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。
6、成立学习小组。根据班内实际情况实行两人小组,以优辅良,以优促后,实现共同提高的目标。
7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。
六、教学进度
第一周:第一章第一节至第二节
第二周:第一章第三节至第五节
第三周:复习第七章 处理习题 第二章第1节
第四周:第二章第2节—3节
第五周:复习第二章 处理习题
第六周;第三章1—4节
第七周:第三章5节—6节 复习第三章 处理习题
第周:第四章
第九周:复习准备考试
第十周:第五章
第十一周:复习第五章 处理习题 第六章第一节
第十二周:第六章第二节至第三节
第十三周:第六章第四节
第十四周:第七章第1—2
第十五周:第七章第3—4
第十六周:复习第五章 处理习题
第十七周以后:复习考试
初二下数学教学工作计划 11
一、学生基本情况:
本人本学期继续担任八(5)、八(6)两班数学的教学任务,上学期学生期末考试的成绩总体来看,成绩不算太好。在学生所学知识的掌握程度上,已经开始出现两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,相对正规教学来说,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生
二、教材分析
本学期教学内容,共计五章,知识的前后联系分析如下:
第十七章 二次根式
本章学习二次根式的概念、性质和它的运算,分两节
1. 二次根式,
2. 二次根式的运算。二次根式的重点是二次根式的化简与计算,难点是正确理解和运用公式。
第十八章 一元二次方程
本章通过实际问题让学生初步体会一元二次方程的概念、并且进一步探究一元二次方程的解法和根的判别式。使学生了解一元二次方程的根与系数的关系,最终掌握一元二次方程的应用。
第十九章 勾股定理
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第二十章 四边形
四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化
第二十一章 数据的集中趋势和离散程度
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
三、本期教学内容重难点:
第十七章 二次根式
1. 二次根式,(重点)
2. 二次根式的运算。(难点)
第十八章 一元二次方程
1.一元二次方程的解法(重难点)
2.一元二次方程的根与系数的关系(重点)
3.一元二次方程的应用(难点)
第十九章 勾股定理
1.勾股定理 (重、难点)
2. 勾股定理的逆定理(重点)
第二十章 四边形
1.平行四边形(重点)
2.矩形菱形正方形(重、难点)
第二十一章 数据的集中趋势和离散程度
1.数据的集中趋势(重点)
2.数据的离散程度(重、难点)
四、本期教学任务:
通过本期的学习,掌握二次根式的运算,学习一元二次方程的解法、让学生掌握一元二次方程的应用、并且进一步探究一元二次方程的根与系数的关系,以及勾股定理等几何知识以及平行四边形、矩形、菱形、正方形、梯形等特殊四边形性质的研究,促进学生对几何知识的认识,发展几何证明的能力这是在知识与技能上。在情感与态度上,通过本期的。学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到“漫江碧透,鱼翔浅底”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。 五、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
六、本学期教学进度安排:
略。
初二数学教案 12
一、教材分析:
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:
勾股定理的证明和应用。
三、教学难点:
勾股定理的证明。
四、教法和学法:
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序:
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。(二)初步感知理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
六、教学目标:
1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2、掌握勾股定理和他的简单应用
重点难点:
重点:能熟练运用拼图的方法证明勾股定理
难点:用面积证勾股定理
教学过程
七、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?
(同学们回答有这几种可能:(1) (2) )
在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
=请同学们对上面的式子进行化简,得到:即=
这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。
八、讲例
1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。
解:由勾股定理得
即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:
答:飞机每个小时飞行540千米。
九、议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作业
1、 1、课文P11§1.2 1 、2
2、选用作业。
数学初二教案 13
教学目标
1、等腰三角形的概念、
2、等腰三角形的性质、
3、等腰三角形的概念及性质的应用、
教学重点:
1、等腰三角形的概念及性质、
2、等腰三角形性质的应用、
教学难点:
等腰三角形三线合一的性质的理解及其应用、
教学过程
Ⅰ、提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是、
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形、
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形、
Ⅱ、导入新课:要求学生通过自己的思考来做一个等腰三角形、
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形、
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角、
思考:
1、等腰三角形是轴对称图形吗?请找出它的对称轴、
2、等腰三角形的两底角有什么关系?
3、顶角的平分线所在的直线是等腰三角形的对称轴吗?
4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线、
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系、
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的`两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高、
由此可以得到等腰三角形的性质:
1、等腰三角形的两个底角相等(简写成“等边对等角”)、
2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)、
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS)、
所以∠B=∠C、
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD、
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°、
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数、
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A、
再由三角形内角和为180°,就可求出△ABC的三个内角、
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷、
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC、
∠A=∠ABD(等边对等角)、
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x、
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°、在△ABC中,∠A=35°,∠ABC=∠C=72°、
[师]下面我们通过练习来巩固这节课所学的知识、
Ⅲ、随堂练习:
1、课本P51练习1、2、3、 2、阅读课本P49~P51,然后小结、
Ⅳ、课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、
Ⅴ、作业:课本P56习题12、3第1、2、3、4题、
板书设计
12、3、1、1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:
1、等边对等角
2、三线合一
数学初二教案 14
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2、 看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3、下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法 例题
1、因式分解的定义
2、提公因式法
初二数学教案 15
一、学习目标:
1、使学生会用完全平方公式分解因式。
2、使学生学习多步骤,多方法的分解因式
二、重点难点:
重点:让学生掌握多步骤、多方法分解因式方法
难点:让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1、推导用完全平方公式分解因式的公式以及公式的特点。
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
练一练。下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习:教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小结:
两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
六、作业:
1、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
初二数学优秀教案 16
一、创设情境
1、一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象)。
2、正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线)。
3、平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4、在平面直角坐标系中,画出函数的图象。我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1、在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点。
2、求直线y=-2x-3与x轴和y轴的交点,并画出这条直线。
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值。
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点。
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,。所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是。
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式。
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值。
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积。
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
初二数学教案 17
新课指南
1、知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力。
2、过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式。在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题。
3、情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。
4、重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则。难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识。
教材解读精华要义
数学与生活
如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块。
思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖。综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块。这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?
知识详解
知识点1代数式
用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数。的字母连接起来的式子叫做代数式。单独的一个数或一个字母也是代数式。
例如:5,a,(a+b),ab,a2-2ab+b2等等。
知识点2列代数式时应该注意的问题
(1)数与字母、字母与字母相乘时常省略“×”号或用“·”。
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)数字通常写在字母前面。
如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。
(3)带分数与字母相乘时要化成假分数。
如:2×ab=ab,切勿错误写成“2ab”。
(4)除法常写成分数的形式。
如:S÷x=。
初二升初三衔接数学教案 18
图案设计
利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案。
通过复习轴对称、平移、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案。
1、设计图案。
2、如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案。
一、复习引入
1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系。
2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?
3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?
1.AB与CD平行且相等;
2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求。
CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.
3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.
二、探索新知
请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计。
例1 (学生活动)学生亲自动手操作题。
按下面的步骤,请每一位同学完成一个别致的图案。
(1)准备一张正三角形纸片(课前准备)(如图a);
(2)把纸片任意撕成两部分(如图b,如图c);
(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;
(4)将(3)得到的图形以正三角形的一个顶�
老师必要时可以给予一定的指导。
三、课堂小结
本节课应掌握:
利用平移、轴对称和旋转的图形变换中的一种或组合设计图案。
八年级数学教案 19
教学指导思想与理论依据
《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的。效果。
教学内容分析:
本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特� 本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。
学生情况分析:
本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。
教学方式与教学手段说明:
本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。
知识与技能:
1、初步理解特殊四边形性质;
2、培养学生自主收集、描述和分析数据的能力;
过程与方法:
1、了解特殊四边形性质的形成过程;
2、初步了解探究新知识的一些方法;
情感与价值观:
1、了解特殊四边形在日常生活中的应用;
2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;
3、初步具有感性认识上升到理性认识的辩证唯物主义思想。
教学环境:
多媒体计算机网络教室
教学课型:
试验探究式
教学重点:
特殊四边形性质
教学难点:
特殊四边形性质的发现
一、设置情景,提出问题
提出问题:
知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?
1、电动门的网格和结点能组成哪些四边形?
2、在开(关)门过程中这些四边形是如何变化的?
3、你还发现了什么?
解决问题:
学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;
当我们学习完本节知识后,其他问题就容易解决了。
(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)
二、整体了解,形成系统
本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。
提出问题:
1、本章主要研究哪些特殊四边形?
2、从哪几方面研究这些特殊四边形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?
解决问题:
学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。
1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形
2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;
3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。
(意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)
三、个体研究、总结性质
1、平行四边形性质
提出问题:
在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。
解决问题:
教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。
在图形变化过程中,
(1)对边相等;
(2)对角相等;
(3)通过AO=CO 、BO=DO,可得对角线互相平分;
(4)通过邻角互补,可得对边平行;
(5)内外角和都等于360度;
(6)邻角互补;
……
指导学生填表:
平行四边形性质矩形性质正方形性质
菱形性质
梯形性质等腰梯形性质
直角梯形性质
(既属于平行四边形性质又属于矩形性质可以画箭头)
按照平行四边形性质的探索思路,分别研究:
2、矩形性质;
3、菱形性质;
4、正方形性质;
5、梯形性质;
6、等腰梯形性质;
7、直角梯形的性质。
(意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)
教师总结:
(意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)
四、联系生活,解决问题
解决问题:
学生操作电脑,观察图形、分组讨论,教师个别指导。
学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。
四边形具有不稳定性,而三角形没有这个特点……
(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)
五、小结
1.研究问题从整体到局部的方法;
2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。
六、作业
1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。
2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。
学习效果评价
针对教学内容、学生特点及设计方案,预计下列学习效果:
利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。
在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。
学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;
由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。
初二数学教案 20
教学目标
1、知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式、
2、过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、
3、情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、
重、难点与关键
1、重点:掌握用提公因式法把多项式分解因式、
2、难点:正确地确定多项式的公因式、
3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
教学方法
采用“启发式”教学方法、
教学过程
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
问题:
1、多项式mn+mb中各项含有相同因式吗?
2、多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由、
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、
二、小组合作,探究方法
【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
三、范例学习,应用所学
【例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、
【教师活动】引导学生观察并分析怎样计算更为简便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本P167练习第1、2、3题、
【探研时空】
利用提公因式法计算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、课堂总结,发展潜能
1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、
2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、
六、布置作业,专题突破
课本P170习题15、4第1、4(1)、6题、
板书设计
初二上册数学教学计划 21
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
三、教材分析
义务教育课程标准实验教科书,人教版八年级数学上册共五章,16大节。
“全等三角形”会带领同学们认识形状、大小相同的图形,探索两个三角形形状、大小相同的条件,了解角平分线的性质。
在我们周围的世界,会看到许多对称的现象,怎样认识轴对称与轴对称图形?十三章“轴对称”会告诉答案。
我们生活在变化的世界中,时间的推移、人口增长、水位升降。变化的例子举不胜举。函数将给提供描述这些变化的一种数学工具——一次函数。
在“整式的乘除与因式分解”中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对“从数到式”这个由具体到抽象的过程的认识。
四、教学措施
1、认真学习钻研新课标,掌握教材,编写好“教案”“学案”。
2、认真备课,争取充分掌握学生动态。
认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生的合理化建议。
7、深化两极生的训导。
八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。
初二上册数学教学计划 22
本学期我担任初二年级(9)、(10)班的数学教学工作, 八年级的数学教学任务非常重,既要完成新课的教学任务,又要复习初一数学知识。同时要补差补缺,做好学生的思想工作,所以在制定八年级的教学计划时,一定要注意时间的安排,同时把握好教学进度。
一、学情分析
通过对上学期几次检测分析,发现这一级的学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当一部分学生因为各种原因,数学已经落下许多知识,部分学生已丧失了学习数学的兴趣。
二、指导思想
以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力和逻辑推理能力。同时完成八年级上册数学教学任务。
三、教学目标
知识技能目标:了解轴对称、轴对称图形、线段的垂直平分线、角的平分线的感念,理解轴对称的基本性质;会利用性质解决有关的问题。掌握整式的乘除和因式分解的运算。熟练掌握分式运算。知道样本平均数、加权平均数的计算、及中位数、众数。了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。了解无理数和实数的概念,知道实数和数轴上的点一一对应; 会解一元一次不等式(组)等;。
能力目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教材分析
本学期教学内容,共计六章,第一章《轴对称与轴对称图形》,本章是在学习了线段、角、平行线、三角形的基础上进一步学习图形的一些性质,主要内容是轴对称、轴对称图形、线段的垂直平分线、角的平分线的感念,理解轴对称的基本性质;会利用性质解决有关的问题。第二章《乘法公式与因式分解》是初一的整式的乘法的一个延续,主要内容有整式的乘法、乘法公式、因式分解。学好本章的运算性质是学好本章内容的基础。本章难点是整式乘法与因式分解的关系和相互的转化,重点是乘法公式。第三章《分式》是在学习整式的基础上来研究的,主要内容就是分式运算、分式的化简,这部分内容对以后的方程、函数等都有非常重要的作用。第四章《样本与估计》本章的主要内容就是平均数、加权平均数的计算、及中位数、众数,为以后学习统计初步打下了基础。第五章《实数》主要内容是算术平方根、平方根、立方根的概念,无理数和实数的概念,实数和数轴上的点一一对应;勾股定理及勾股定理的应用,通过探索三角形的三边关系,得到勾股定理,同时还介绍了一种直角三角形的判定方法,最后介绍了勾股定理的应用。重点是勾股定理,难点是勾股定理的应用。这又学习了直角三角形的一个性质,为以后的学习埋下了伏笔。第六章《一元一次不等式》主要内容就是解一元一次不等式,这为以后的一次函数和一次方程,一次不等式三者的关系的学习提供了很好的探究条件。
五、教学措施
1、精心备课,设置好每个教学情境,激发学生学习兴趣和欲望。深入浅出,帮助学生理解各个知识点,突出重点,讲透难点。
2、加强对学生课后的辅导,尤其是中等生和后进生的基础知识的辅导,提高他们的解题作答能力和正确率。
3、精心组织单元测试,认真分析试卷中暴露出来的问题,并对其中大多数学生存在的问题集中进行分析与讲解,力求透彻。对于少部分学生存在的问题进行小组辅导,突破难点。
4、做好学生的思想教育工作,促进学生学习的积极性,从而提高学生的学习成绩。
六、课时安排
全书内容(含各章复习)与课时安排为
第一章 轴对称与轴对称图形---------------------------1--2周
第二章 乘法公式与因式分解------------------------- 34周
第三章 分式--------------------------- -------------------- 5---7周
期中复习与检测 ------------------------------------ --------- 8周
第四章 样本与估计----------------------------------- 910周
第五章 实数------------------ -------------------------- 11---13周
第六章 一元一次不等式-----------------------------14---16周
期末复习 -------------------------------------------------17---18周
期末检测 ----------------------------------------------------19周
数学初二教案 23
教学目标
1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;
2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;
教学重点
掌握频率分布直方图概念及其应用;
教学难点
绘制连续统计量的直方图
教学过程
Ⅰ.提出问题,创设情境,引入新课:
问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?
63名学生的身高数据如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(确定组距)最大值为172,最小值为149,他们的差为23
(身高x的变化范围在23厘米,)
(分组划记)频数分布表:
身高(x)划记频数(学生人数)
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
从表中看,身高在155≤x<158,158≤x<161,161≤<164三组人最多,共41人,所以可以从身高在155~164cm(不含164cm)之间的学生中选队员
(绘制频数分布直方图如课本P72图12.2-3)
探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?
分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。
归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。
我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。
首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。
频数折线图也可以不通过直方图直接画出。
根据表12.2-2,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。
II课堂小结:
(1)怎样制作频数分布直方图和频数分布折线图
(2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组
(3)如果取个长方形上边的中点,可以得到频数折线图
(4)求各小组两个断点的平均数,这些平均数叫组中值。
初二上册数学教学计划 24
一、制定计划的目的
为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科工作计划。
二、加强师德修养,提高道德素质
认真学习《义务教育法》、《教师法》、《中小学教师职业道德规范》等教育法律法规;严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待家长做到:主动协调,积极沟通;对待自己做到:严于律已、以身作则、为人师表。
三、加强教育教学理论学习
本学期我担任八年级数学的教学。我能积极投入到课改的实践探索中,认真学习、贯彻新课标,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点。
四、教学工作
在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,主要有以下方面的工作:
1、认真学习课标
通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果。
2、认真备好课
①认真学习贯彻新课标,钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。
③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教学、如何安排每节课的活动。
3、坚持坚持学生为主体,向45分钟课堂教学要质量。
精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。首先加强对学生学法的指导,引导学生学会学习。提高学生自学能力;给学生提供合作学习的氛围,在学生自学的基础上,分学习小组,使学生在合作学习的氛围中,提高发现错误和纠正错误的能力;为学生提供机会,培养他们的创新能力。其次加强教法研究,提高教学质量。我在教学中着重采取了问题--讨论式教学法,通过以下几个环节进行操作:指导读书方法,培养问题意识;创设探究环境,全员质凝研讨;补充遗缺遗漏,归纳知识要点。
4、认真批改作业
在作业批改上,做到认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在讲评作业时做到有的放矢,使学生能及时认识并纠正作业中的错误。
五、需要注意的方面
1、在课堂上改进教学方法,多采用探索、启发式教学。
2、注意教科书的系统性和学科知识的整合,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3、注意发展学生探索知识的能力,提高学生分析问题的能力。
4、加强开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5、鼓励合作学习,加强个别辅导,提高差生成绩。
6、注意解题方法和解题策略的学习。
7、因材施教,宽容爱护学生,充分发挥学生的主体作用。
六、教学检测及评价
重视过程性评价,采取阶段性评价何过程性评价相结合的方式考查和评价学生。发挥评价的激励、反馈、调整和改进功能,使评
八年级数学教案 25
学习目标(学习重点):
1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2.运用菱形的识别方法进行有关推理。
补充例题:
例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由。
例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.
四边形AFCE是菱形吗?说明理由。
例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点
(1)试说明四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长;
(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形。
课后续助:
一、填空题
1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,
且DE∥BA,DF∥ CA
(1)要使四边形AFDE是菱形,则要增加条件______________________
(2)要使四边形AFDE是矩形,则要增加条件______________________
二、解答题
1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。
2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直吗?为什么?
(2) 四边形ABCD是菱形 吗?
3.如图,在□ABCD中,已知ADAB,ABC的。平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。
4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ABF≌
⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由。
初二上册数学教学计划 26
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。
三、教材分析
第十一章一次函数通过对变量的考察,体会函数的概念,并进一步研究其 了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
第十三章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十四章轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十五章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。
初二数学教案 27
一、班级情况分析:
本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。
一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。
两班的整体成绩均不够理想。
二、教材分析:
本套教材切合《标准》的课程目标,有以下特点:
1、为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。
2、向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。
3、为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。
4、展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。
5、满足不同学生发展的需求。
三、教学目标及要求:
第一章:
1、经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2、经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3、了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。
4、会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1、经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。
3、经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。
4、进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。
第三章:
1、能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。
2、了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。
3、通过实例,体验收集、整理、描述和分析数据的过程。
4、能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。
第四章:
1、经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。
2、体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。
3、能设计符合要求的简单概率模型。
第五章:
1、通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。
2、在探索图形性质的过程中,发展推理能力和有条理的表达能力。
3、进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
4、了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
5、在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
第六章:
1、经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。
2、能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。
3、能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。
4、能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
第七章:
1、在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3、探索并了解基本图形的轴对称性及其相关性质。
4、能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。
5、欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学改革的设想(教学具体措施)
充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:
1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。
2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。
3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。
4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。
5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。
6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。
7、课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。
8、重视学生学习兴趣的培养,激发学生学习数学的内驱力。
9、大胆地深度尝试新的教学方法,要因地制宜,因材施教。
10、重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。
11、注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。
12、多用多媒体教学,使数学生动化。
13、多用实物教学,使数学形象化。
14、实行课课清,日日清,周周清。
15、加强课堂管理,严把课堂质量关,提高课堂效率。
16、抓好学生的作业上交完成情况。
17、加强与学生的交流,做好学生的思想教育与培优辅差工作。
五、拟定本学期教学目标
六、拟定本学期培优扶养计划。
培扶措施
对临界优秀生
在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。
对临界及格生:
首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。
七、教学内容及课时安排(略)
八、作业格式及批改要求:
作业格式:
1、作业本左边都画上竖线,留约0.5CM空白。
2、每次作业都要在第一行注明日期和作业的出处,如P42,1即课本42面第1题。
3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。
批改要求:
1、每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。
2、每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分A、B、C三等,代表学生的书写成绩。)
3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。
数学初二教案 28
一、教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、重点、难点
1.教学重点:菱形的性质1、2.
2.教学难点:菱形的性质及菱形知识的综合应用.
三、课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
四、例习题分析
例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:∠AFD=∠CBE.
证明:∵四边形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
六、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
数学初二教案 29
教学目标:
了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根
教学重点:
了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根
教学难点:
对大小的估算及如何理解是非负数以及被开方数是非负数;正确区分算术平方根与平方根
过程
一、创设情景,导入新课
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?
这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)
二、合作交流,解读探究
讨论:
1、什么样的运算是平方运算?
2、你还记得1~20之间整数的平方吗?
自主探索:让学生独立看书,自学教材
总结:一般地,如果一个正数的平方为,即,那么正数叫做的算术平方根,记为,读作根号,其中叫做被开方数。另外:0的算术平方根是0
探究:怎样用两个面积为1的正方形拼成一个面积为2的'大正方形
把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为,则;由算术平方根的意义,即大正方形的边长为。讨论:有多大呢?
思考:你能举些象这样的无限不循环小数吗?
三、应用迁移,巩固提高
例1求下列各数的算术平方根
⑴100
⑵ ⑶0.0001
⑷0
点拨:由一个数的算术平方根的定义出发来解决问题
思考:-4有算术平方根吗?
备选例题:要使代数式有意义,则的取值范围是()
A. B. C. D.
四、总结反思,拓展升华
小结:
1、算术平方根的定义和性质;
2、用计算器求一个正数的算术平方根
五、课堂跟踪反馈
1、非负数的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____
2、一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_______
3、的算术平方根是_____,的算术平方根____
4、若是49的算术平方根,则=()
A. 7 B. -7 C. 49 D.-49
5、若,则的算术平方根是()
A. 49 B. 53 C.7 D .
6、若,求的值。
7、若是的整数部分,是的小数部分,试确定、的值。
八年级数学教案 30
知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
重点:函数的概念
难点:函数的概念
教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
教学设计:
引入:
信息1:小明在14岁生日时,看到
① 这张图告诉我们哪些信息?
② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:
① 这表告诉我们哪些信息?
② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1 判断下列变量之间是不是函数关系:
(5) 长方形的宽一定时,其长与面积;
(6) 等腰三角形的底边长与面积;
(7) 某人的年龄与身高;
活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系
思考:自变量是否可以任意取值
例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1) 写出表示y与x的函数关系式。
(2) 指出自变量x的取值范围。
(3) 汽车行驶200km时,油箱中还有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活动2:练习教材9页练习
小结:(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
作业:18页:2,3,4题