您好,欢迎访问读文库

上传文档赚钱

当前位置:首页 > 初中试卷 > 2018-2019学年度七年级数学上册 第1章 有理数 1.3 绝对值同步练习 (新版)浙教版

2018-2019学年度七年级数学上册 第1章 有理数 1.3 绝对值同步练习 (新版)浙教版

  • 西红柿
  • 0 次阅读
  • 0 次下载
  • 2021-03-31 13:48:47
二扫码支付 微信
二扫码支付 支付宝

还剩... 页未读,继续阅读

免费阅读已结束,点击付费阅读剩下 ...

¥ 0 元,已有0人购买

免费阅读

阅读已结束,您可以下载文档离线阅读

¥ 1 元,已有0人下载

付费下载
文档简介:

11.3绝对值学校:___________姓名:___________班级:___________一.选择题(共12小题)1.﹣9的绝对值是()A.﹣9B.9C.D.2.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和13.已知a,b,c为非零的实数,则的可能值的个数为()A.4B.5C.6D.74.下列运算结果为﹣2的是()A.+(﹣2)B.﹣(﹣2)C.+|﹣2|D.|﹣(+2)|5.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数6.﹣的相反数是()A.B.C.D.7.下列说法正确的个数有()①﹣|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=b,则a与b互为相反数⑤若|a|+a=0,则a是非正数.A.1个B.2个C.3个D.4个8.|﹣2|的值是()2A.﹣2B.2C.D.﹣9.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和10.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2B.3C.4D.511.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣12.绝对值最小的数是()A.0.000001B.0C.﹣0.000001D.﹣100000二.填空题(共10小题)13.已知x>3,化简:|3﹣x|=.14.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.绝对值等于它的相反数的数是.16.绝对值是5的有理数是.17.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.18.若|﹣m|=2018,则m=.19.|x+1|+|x﹣2|+|x﹣3|的值为.20.如果a•b<0,那么=.21.如图,若|a+1|=|b+1|,|1﹣c|=|1﹣d|,则a+b+c+d=.22.化简:﹣(﹣5)=,﹣|﹣4|=,+|﹣3|=.3三.解答题(共5小题)23.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.24..阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=.25.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣43|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.26.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.527.设x1,x2,x3,x4,x5,x6是六个不同的正整数,取值于1,2,3,4,5,6,记S=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|+|x5﹣x6|+|x6﹣x1|,求S的最小值.6参考答案与试题解析一.选择题(共12小题)1.【解答】解:根据绝对值的性质,得|﹣9|=9.故选:B.2.【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C错误,故选:C.3.【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,7则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.4.【解答】解:A、+(﹣2)=﹣2,此选项符合题意;B、﹣(﹣2)=2,此选项不符合题意;C、+|﹣2|=2,此选项不符合题意;D、|﹣(+2)=2,此选项不符合题意;故选:A.5.【解答】解:由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,8则必是b<0、c<0、a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立,D被否定,于是应在两正一负的答案中寻找正确答案,若a,b为正数,c为负数时,则:|a|+|b|>|c|,∴a+b+c≠0,∴A被否定,若a,c为正数,b为负数时,则:|a|+|c|>|b|,∴a+b+c≠0,∴B被否定,只有C符合题意.故选:C.6.【解答】解:﹣的相反数是,故选:B.7.【解答】解:﹣|0|=0,不是负数,故①不正确;|﹣3|=|3|,故②不正确;当a=b时,|a|=b,故④不正确;正数和0的绝对值等于它本身,负数小于它的绝对值,故③正确;当a是非正数时,|a|+a=0,故⑤正确.综上正确的是③⑤.故选:B.8.9【解答】解:∵﹣2<0,∴|﹣2|=2.故选:B.9.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.10.【解答】解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故选:B.11.【解答】解:﹣2018的绝对值是2018.故选:A.12.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.二.填空题(共10小题)13.【解答】解:∵x>3,10∴3﹣x<0,∴|3﹣x|=x﹣3,故答案为:x﹣3.14.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.15.【解答】解:绝对值等于它的相反数的数是负数和0,故答案为:负数和0;16.【解答】解:绝对值是5的有理数是±5,故答案为:±517.【解答】解:由图知,a>0,b<0,c>a,且a+b=0,∴|a﹣c|﹣|b+c|=c﹣a﹣c﹣b=﹣(a+b)=0.18.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±201819.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;11当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.20.【解答】解:∵a•b<0,∴|a|和|b|必有一个是它本身,一个是它的相反数,|ab|是它的相反数,∴=1﹣1﹣1=﹣1;或=﹣1+1﹣1=﹣1.故答案为:﹣1.21.【解答】解:根据数轴,可知a<﹣1<b<0<c<1<d,所以a+1<0,b+1>0,1﹣c>0,1﹣d<0,则﹣a﹣1=b+1,即a+b=﹣2;1﹣c=d﹣1即d+c=2,则a+b+c+d=﹣2+2=0.22.【解答】解:﹣(﹣5)=5,﹣|﹣4|=﹣4,+|﹣3|=3,故答案为:5、﹣4、3.三.解答题(共5小题)23.【解答】解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x12﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030.24.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.故+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.故++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则++═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.25.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,13②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要2018-2019学年度七年级数学上册 第1章 有理数 1.3 绝对值同步练习 (新版)浙教版

西红柿

67989篇文档

评论

发表评论
< /10 > 付费下载 ¥ 1 元
Copyright © 读文库 All Rights Reserved. 皖ICP备18020814号-3
×
保存成功