您好,欢迎访问读文库

上传文档赚钱

当前位置:首页 > 初中试卷 > 2018-2019学年七年级数学上册 第四章 几何图形初步 4.1 几何图形同步练习 (新版)新人教

2018-2019学年七年级数学上册 第四章 几何图形初步 4.1 几何图形同步练习 (新版)新人教

  • 西红柿
  • 0 次阅读
  • 0 次下载
  • 2021-03-31 13:48:41
二扫码支付 微信
二扫码支付 支付宝

还剩... 页未读,继续阅读

免费阅读已结束,点击付费阅读剩下 ...

¥ 0 元,已有0人购买

免费阅读

阅读已结束,您可以下载文档离线阅读

¥ 1 元,已有0人下载

付费下载
文档简介:

14.1几何图形同步练习一、单选题1.下列图形中不是正方体的平面展开图的是()A.B.C.D.【答案】C【解析】:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.一个几何体的边面全部展开后铺在平面上,不可能是()A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆【答案】B【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()2A.B.C.D.【答案】B【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A.4个B.3个C.2个D.1个【答案】B【解析】:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:B.【分析】根据几何体的形状,可得答案.5.下列图形是四棱柱的侧面展开图的是()3A.B.C.D.【答案】A【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6.下面现象能说明“面动成体”的是()A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹【答案】A【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确;B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.7.如图,将正方体沿面AB′C剪下,则截下的几何体为()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】A4【解析】:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.8.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④【答案】B【解析】:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.二、填空题9.薄薄的硬币在桌面上转动时,看上去象球,这说明了________.【答案】面动成体【解析】:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去象球,这种现象说明面动成体.故答案为:面动成体.【分析】薄薄的硬币在桌面上转动时,看上去象球,这是面动成体的原理在现实中的具体表现.10.将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.【答案】-1【解析】:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a相对面的数字是﹣1.5故答案为:﹣1.【分析】在正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,得到在此正方体上a相对面的数字是﹣1.11.六棱柱有________个顶点,________个面,________条棱.【答案】12;8;18【解析】:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.12.一个棱柱的棱数是18,则这个棱柱的面数是________.【答案】8【解析】:一个棱柱的棱数是18,这是一个六棱柱,它有6+2=8个面.故答案为:8.【分析】根据棱柱的概念和定义,可知有18条棱的棱柱是六棱柱,据此解答.13.将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).【答案】(1)、(2)、(3);(5)、(6);(4)【解析】:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.14.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.6【答案】24【解析】:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、解答题15.如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?【答案】解:连接CE,与BD的交点处架立交桥;1座.【解析】【分析】连接CE时只与BD有一个交点,所以只有一座立交桥.16.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.17.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)7【答案】解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积==5.【解析】【分析】根据题意可知正方体被截取的一部分为一个直三棱柱,由正方体的棱长相等求出三棱柱各个边的长,求出三棱柱的体积.18.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.2018-2019学年七年级数学上册 第四章 几何图形初步 4.1 几何图形同步练习 (新版)新人教

西红柿

67989篇文档

评论

发表评论
< /7 > 付费下载 ¥ 1 元
Copyright © 读文库 All Rights Reserved. 皖ICP备18020814号-3
×
保存成功