您好,欢迎访问读文库

上传文档赚钱

当前位置:首页 > 初中试卷 > 2022年中考数学二轮复习经典问题专题训练01 侧M型

2022年中考数学二轮复习经典问题专题训练01 侧M型

  • ghj*082
  • 0 次阅读
  • 0 次下载
  • 2021-08-27 14:54:14
二扫码支付 微信
二扫码支付 支付宝

还剩... 页未读,继续阅读

免费阅读已结束,点击付费阅读剩下 ...

¥ 0 元,已有0人购买

免费阅读

阅读已结束,您可以下载文档离线阅读

¥ 5 元,已有0人下载

付费下载
文档简介:

专题01侧M型【规律总结】模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、CD部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.【典例分析】例1.(2020·辽宁大连市·七年级期末)如图,∠BCD=70°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=110°B.∠α+∠β=70°C.∠β﹣∠α=70°D.∠α+∠β=90°【答案】B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD=∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.例2.(2020·湖北武汉市·七年级期末)如图,ABCD∥,EF平分BED,66DEFD,28BD,则BED__________.【答案】80【分析】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∴∠DEF=12∠BED,∵∠DEF+∠D=66°,∴12∠BED+∠D=66°,∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.例3.(2020·洛阳市第五中学九年级期中)已知:如图1,12180,AEFHLN.(1)判断图中平行的直线,并给予证明;(2)如图2,2PMQQMB,2PNQQND,请判断P与Q的数量关系,并证明.【答案】(1)AB∥CD,EF∥HL,证明见解析;(2)∠P=3∠Q,证明解析.【分析】(1)求出∠AMN+∠2=180°,根据平行线的判定推出AB∥CD即可;延长EF交CD于F1,根据平行线性质和已知求出∠AEF=∠EF1L,根据平行线的判定推出即可;(2)作QR∥AB,PL∥AB,根据平行线的性质得出∠RQM=∠QMB,RQ∥CD,推出∠MQN=∠QMB+∠QND,同理∠MRN=∠PMB+∠PND,代入求出即可.【详解】解:(1)AB∥CD,EF∥HL,证明如下:∵∠1=∠AMN,∴∠1+∠2=180°,∴∠AMN+∠2=180°,∴AB∥CD;延长EF交CD于F1,∵AB∥CD,∴∠AEF=∠EF1L,∵∠AEF=∠HLN,∴∠EF1L=∠HLN,∴EF∥HL;(2)∠P=3∠Q,证明如下:∵由(1)得AB∥CD,作QR∥AB,PL∥AB,∴∠RQM=∠QMB,RQ∥CD,∴∠RQN=∠QND,∴∠MQN=∠QMB+∠QND,∵AB∥CD,PL∥AB,∴AB∥CD∥PL,∴∠MPL=∠PMB,∠NPL=∠PND,∴∠MPN=∠PMB+∠PND,∵∠PMQ=2∠QMB,∠PNQ=2∠QND,∴∠PMB=3∠QMB,∠PND=3∠QND,∴∠MPN=3∠MQN,即∠P=3∠Q;【点睛】本题考查平行线的性质和判定,平行线公理的推论.能正确作出辅助线是解决本题的关键.【好题演练】1.(2020·广西柳州市·七年级期末)如图所示,如果AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=180°B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α-∠β-∠γ=180°[2.(2020·河南郑州市·七年级期末)如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为()A.101°B.103°C.105°D.107°二、填空题3.(2020·浙江绍兴市·七年级期末)如图,已知AB//CD,120AFC,13EAFEAB,13ECFECD,则AEC____度.4.(2015·山西九年级专题练习)如图,l∥m,等边△ABC的顶点A在直线m上,则∠=_________.三、解答题5.(2020·辽宁辽阳市·七年级期末)请你探究:如图(1),木杆EB与FC平行,木杆的两端B、C用一橡皮筋连接.(1)在图(1)中,BÐ与C有何关系?(2)若将橡皮筋拉成图(2)的形状,则A、BÐ、C之间有何关系?(3)若将橡皮筋拉成图(3)的形状,则A、BÐ、C之间有何关系?(4)若将橡皮筋拉成图(4)的形状,则A、BÐ、C之间有何关系?(5)若将橡皮筋拉成图(5)的形状,则A、BÐ、C之间有何关系?(注:以上各问,只写出探究结果,不用说明理由)6.(2020·云南昆明市·七年级期末)如图①,在平面直角坐标系中,点,AB的坐标分别为1,0)0(,3,,现同时将点,AB分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点,AB的对应点,CD,连接,.ACBD问题提出:(1)请直接写出点,CD的坐标:C,:D,及四边形ABDC的面积ABDCS四边形﹔拓展延伸:(2)如图①,在坐标轴上是否存在一点M,使14MACABDCSS四边形,若存在,请求出点M的坐标,若不存在,试说明理由.迁移应用:(3)如图②,点P是线段BD上的个动点,连接PCPO,,当点P在BD上移动时(不与BD,重合)给出下列结论:①DCPBOPCPO的值不变,②DCPCPOBOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.专题01侧M型【规律总结】模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、CD部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.【典例分析】例1.(2020·辽宁大连市·七年级期末)如图,∠BCD=70°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=110°B.∠α+∠β=70°C.∠β﹣∠α=70°D.∠α+∠β=90°【答案】B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD=∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.例2.(2020·湖北武汉市·七年级期末)如图,ABCD∥,EF平分BED,66DEFD,28BD,则BED__________.【答案】80【分析】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∴∠DEF=12∠BED,∵∠DEF+∠D=66°,∴12∠BED+∠D=66°,∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.例3.(2020·洛阳市第五中学九年级期中)已知:如图1,12180,AEFHLN.(1)判断图中平行的直线,并给予证明;(2)如图2,2PMQQMB,2PNQQND,请判断P与Q的数量关系,并证明.【答案】(1)AB∥CD,EF∥HL,证明见解析;(2)∠P=3∠Q,证明解析.【分析】(1)求出∠AMN+∠2=180°,根据平行线的判定推出AB∥CD即可;延长EF交CD于F1,根据平行线性质和已知求出∠AEF=∠EF1L,根据平行线的判定推出即可;(2)作QR∥AB,PL∥AB,根据平行线的性质得出∠RQM=∠QMB,RQ∥CD,推出∠MQN=∠QMB+∠QND,同理∠MRN=∠PMB+∠PND,代入求出即可.【详解】解:(1)AB∥CD,EF∥HL,证明如下:∵∠1=∠AMN,∴∠1+∠2=180°,∴∠AMN+∠2=180°,∴AB∥CD;延长EF交CD于F1,∵AB∥CD,∴∠AEF=∠EF1L,∵∠AEF=∠HLN,∴∠EF1L=∠HLN,∴EF∥HL;(2)∠P=3∠Q,证明如下:∵由(1)得AB∥CD,作QR∥AB,PL∥AB,∴∠RQM=∠QMB,RQ∥CD,∴∠RQN=∠QND,∴∠MQN=∠QMB+∠QND,∵AB∥CD,PL∥AB,∴AB∥CD∥PL,∴∠MPL=∠PMB,∠NPL=∠PND,∴∠MPN=∠PMB+∠PND,∵∠PMQ=2∠QMB,∠PNQ=2∠QND,∴∠PMB=3∠QMB,∠PND=3∠QND,∴∠MPN=3∠MQN,即∠P=3∠Q;【点睛】本题考查平行线的性质和判定,平行线公理的推论.能正确作出辅助线是解决本题的关键.【好题演练】1.(2020·广西柳州市·七年级期末)如图所示,如果AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=180°B.∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α-∠β-∠γ=180°[【答案】C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.2.(2020·河南郑州市·七年级期末)如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=43°,则∠2的度数为()A.101°B.103°C.105°D.107°【答案】B【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=43°,借助三角形外角的性质求出∠AMO即可解决问题.【详解】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,∠1=43°,∴∠ANM=43°,∴∠AMO=∠A+∠ANM=60°+43°=103°,∴∠2=∠AMO=103°.故选:B.【点睛】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.二、填空题3.(2020·浙江绍兴市·七年级期末)如图,已知AB//CD,120AFC,13EAFEAB,13ECFECD,则AEC____度.【答案】90【详解】解:如图,过点E作EH∥AB,过点F作FG∥AB,∵AB∥CD,∴AB∥FG∥CD,AB∥EH∥CD,∴AFGFAB??,GFCFCD??,AFGFAB??,GFCFCD??,又∵13EAFEAB,13ECFECD,∴3EABEAF??,3ECDECF??,∴4FABEAF??,4ECDECF??,∴44120AFCAFGGFCFABECDEAFECF????????,即:30EAFECF???,∴()33390AECEABECDEAFECFEAFECF???????o.

ghj*082
ghj*082
  • 69

    文档
  • 100

    金币
Ta的主页 发私信

69篇文档

评论

发表评论
< /10 > 付费下载 ¥ 5 元
Copyright © 读文库 All Rights Reserved. 皖ICP备18020814号-3
×
保存成功